Navigation 
 Home 
 Search 
 Site map 

 Contact Graeme 
 Home 
 Email 
 Twitter

 Skip Navigation LinksMath Help > Trigonometry > Trig Equivalences > cos and sin product identity

cos(a−b) cos(t+u) − cos(a+b) cos(t−u) = sin(u+a) sin(b−t) − sin(u−a) sin(b+t)

For the proof, just expand the following expression to show that it is zero:

cos(a−b) cos(t+u) − cos(a+b) cos(t−u) − sin(u+a) sin(b−t) + sin(u−a) sin(b+t)

=(cos a cos b + sin a sin b)(cos t cos u − sin t sin u)
−(cos a cos b − sin a sin b)(cos t cos u + sin t sin u)
−(sin u cos a + cos u sin a)(sin b cos t − cos b sin t)
+(sin u cos a − cos u sin a)(sin b cos t + cos b sin t)

= cos a cos b cos t cos u + sin a sin b cos t cos u − cos a cos b sin t sin u − sin a sin b sin t sin u
− cos a cos b cos t cos u + sin a sin b cos t cos u − cos a cos b sin t sin u + sin a sin b sin t sin u
− cos a sin b cos t sin u − sin a sin b cos t cos u + cos a cos b sin t sin u + sin a cos b sin t cos u
+ cos a sin b cos t sin u − sin a sin b cos t cos u + cos a cos b sin t sin u − sin a cos b sin t cos u

= 0

This identity is used in the proof of Urquhart's Theorem.

Internet references

 

Related Pages in this website

Trig identities

 

The webmaster and author of this Math Help site is Graeme McRae.