Navigation 
 Home 
 Search 
 Site map 

 Contact Graeme 
 Home 
 Email 
 Twitter

 Skip Navigation LinksMath Help > Number Theory > Factors, Coprimes, and Totient Function > Sigma Function

The Sigma Function

Definition

σ(n) is the sum of the factors of n.

σk(n) is the sum of the n's factors, each to the power k.  So, in particular, σ0(n), sometimes called τ(n), tau(n), is the number of factors of n.

Working with the Sigma Function

σ(1)=1.

If p is prime then σ(p)=p+1.

If p is prime then σ(pn) = 1 + p + p2 + ... + pk = (pn+1-1)/(p-1).

Put more simply, when n is a power of a prime, p, then σ(n) = (pn-1)/(p-1)

Sigma is a multiplicative function -- that means when a and b are coprime (i.e. GCD(a,b)=1), then σ(ab) = σ(a) σ(b). 

Together, these rules enable you to find the sum of factors of any number, as long as you know its prime factorization.

Example

17640 = 23 32 5 72 

σ(17640) = (24-1)/(2-1) (33-1)/(3-1) (52-1)/(5-1) (73-1)/(7-1) 

σ(17640) = 15 * 13 * 6 * 57 = 66690

Internet references

Mathworld: Divisor Function 

Related Pages in this website

Totient Function -- the number of coprimes of n.

Highly Composite Numbers -- numbers, n, such that no number smaller than n has as many divisors as n.

 


The webmaster and author of this Math Help site is Graeme McRae.